OPTIMISATION OF ACTIVATED SLUDGE PROCESS

INTRODUCTION

FIRST PART: GENERAL RULES CONCERNING THE REQUIRED DATA
SECOND PART: OPERATING PARAMETERS FOR ACTIVATED SLUDGE PROCESS
ASP

TOOLS: ACTIVATED SLUDGE PROCESS OPTIMISATION: CALCULATIONS

INTRODUCTION

The present document is elaborated in order to help industrials to optimise their ASP.

<u>In a first part</u>, general rules are exposed, concerning the required data allowing this present work to be useful.

In a second part, a Word document is presented; it contains five parts:

- data about the present operating conditions,
- formula allowing to assess the theoretical operating conditions,
- summary allowing to compare the two previous parts,
- · propositions about optimisation,
- annexes presenting different useful tools in order to interpret the plant operating:
 - concentration of pollutants that make prebiological treatment desirable,
 - optimal values for inlet waste water,
 - F/M ratio and correlation with other operating parameters,
 - optimal values for clarifier and sludge recycling,
 - mixed liquor microscopic interpretation : filamentous bacteria, microfauna and relationship with operating conditions,
 - > standards and calibration solutions for some water analysis.

The calculations allowing to optimise the operating conditions are presented in an **Activated Sludge Process Optimisation : Calculations**.

FIRST PART: GENERAL RULES CONCERNING THE REQUIRED DATA

1. Flow measurement

The present tool requires data about volume flow rates :

- for inlet raw water (in the aeration tank),
- for recycled sludge,
- for extracted sludge.

2. Analysis of water

The data regarding the present operating conditions should be reliable. All the reagents should be properly labelled : chemical, date, concentration, hazard. Some analysis calibrations should be carried out regularly.

Calibration techniques are presented <u>in annexes</u>, concerning the most difficult analysis, or regarding analysis for which calibration is rarely performed:

- COD,
- BOD,
- oxidation-reduction potential,
- dissolved oxygen.

SECOND PART : OPERATING PARAMETERS FOR ACTIVATED SLUDGE PROCESS ASP

0. Caption

- 1. Present data about the plant
 - 1.1. WW and eventually standard
 - 1.2. Aerated tank
 - 1.3 Settling tank + 1.4 Extracted sludge + 1.5 Recirculated sludge
- 2. Theoretical sizing
 - 2.1. WW
 - 2.2. Aerated tank
 - 2.3 Settling tank + 2.4. Theoretical sludge extraction flow FTES + 2.5. Sludge age SA + 2.6. Sludge recirculation
- 3. Summary
 - 3.1. iWW quality
 - 3.2. **F/M** ratio
 - 3.3. SVI and settling
 - 3.4. Mixed liquor microscopic observations
 - 3.5. Aeration
 - 3.6. Sludge draw-ofF
 - 3.7. Sludge recirculation
- 4. Propositions for optimisation
- 5. Mixed liquor microscopic interpretation
 - 5.1. Filamentous bacteria and relationship with operating
 - 5.2. Brief phenetic classification of microfauna in activated sludge

0. Caption

Parameter	Definition	
2.3	Weight (mg) of O ₂ recovered by the denitrification of 1mgN.NO ₃	
4.3	Weight (mg) of O ₂ necessary to nitrify 1mg N.NH ₃	
a'	Weight (mg) of oxygen needed to oxidise 1mg BOD ₅	
a _m	Weight (mg) of SS issue from the growth of 1mg MLVSS	
b	Weight (mg) of SS released from the lysis of 1 mg MLVSS, per day	
b'	Weight (mg) of oxygen needed to oxidise 1mg MLVSS, per day	
BOD _{5 M}	Maximum inlet waste water BOD ₅	
BOD ₅	Biochemical Oxygen Demand in 5 days	
[BOD ₅] _{T oww}	Theoretical purpose for outlet BOD ₅ concentration	
C c'	Correction coefficient (for oxygen dissolution in mixed liquor)	
c'	recovering yield of oxygen issued from denitrification	
COD	Chemical Oxygen Demand	
DS	Dry Solids	
E	Energy consumption (for aerators)	
ES	Extracted Sludge	
F/M ratio	Food / Microorganism ratio	
F _{ES}	Sludge Extraction volume flow rate (present data)	
$\mathbf{F}_{\mathbf{RS}}$	Sludge Recirculation volume flow rate (present data)	
F _{TES}	Theoretical sludge extraction volume flow rate	
F _{TRS}	Theoretical sludge recirculation volume flow rate	
H	Height (for settling tank)	
НО	Hourly oxygen transfer capacity	
iWW	inlet Waste Water	
Le	BOD ₅ mass flow rate to be removed (Lye effluent)	
M	Maximum value in inlet waste water (for q _v , BOD ₅ , N.NH ₃ , TKN, SS)	
MLSS	Mixed Liquor Suspended Solids	
MLVSS	Mixed Liquor Volatile Suspended Solids	
N	N.NH ₃ to be nitrified (mass flow rate)	
О _{2 Т}	Theoretical oxygen need (mass flow rate)	
OC	Oxygen capacity	
ORP	Oxidation Reduction Potential	
Parameter	Definition	
oWW	outlet Waste Water	
q _{v max}	maximum inlet waste water volume flow rate	
S	Surface (for settling tank)	
SA	Sludge Age	
Le M MLSS MLVSS N O _{2 T} OC ORP Parameter oWW $q_{v max}$ S	BOD ₅ mass flow rate to be removed (Lye effluent) Maximum value in inlet waste water (for q _v , BOD ₅ , N.NH ₃ , TKN, SS) Mixed Liquor Suspended Solids Mixed Liquor Volatile Suspended Solids N.NH ₃ to be nitrified (mass flow rate) Theoretical oxygen need (mass flow rate) Oxygen capacity Oxidation Reduction Potential Definition outlet Waste Water maximum inlet waste water volume flow rate Surface (for settling tank)	

Sf	SS flow in outlet settled water (mass flow rate)	
SOTC	Specific oxygen transfer capacity	
SS	Suspended Solids	
Sv	Sludge Volatile : weight of MLVSS in aeration tank	
SVI	Sludge Volume Index	
t	Running time (for aerators): hours /d	
T o WW	Theoretical outlet Waste Water (purpose of the treatment)	
TKN	Total Kjeldahl Nitrogen	
UV	Upward velocity	
V_{30}	Sludge volume after 30 min mixed liquor settling in a 1L-cylinder	
V _{AT}	Aeration Tank Volume	

1. Present data about the plant 1.1. WW and eventually standard

Average values	iWW	oWW	Purpose of the treatment or
			discharge standard
$q_v (m^3/d)$			
ORP (V)			
T (°C)			
pH			
$[SS] (kg/m^3)$			
$[BOD_5] (kgO_2 / m^3)$			
$[COD] (kgO_2 / m^3)$			
[TKN] (kg/m^3)			
$[N.NH_3]$ (kg / m ³)			
$[N.NO_3^-]$ (kg/m ³)			
$[P]$ (kg/m^3)			
[oil] (mg / L)			
[Pb] (mg / L)			
[Cu + Ni + CN] (mg/L)			
[Cr VI + Zn] (mg/L)			
[CrIII](mg/L)			
alcalinity (mgCaCO ₃ /L)			
[sulfides] (mg / L)			
[phenols] (mg / L)			
[DS] (g / L)			

Flow variation:

	maximum	average
$q_v (m^3 / d)$		
$[BOD_5](kgO_2/m^3)$		
$[N.NH_3](kg/m^3)$		

1.2. Aerated tank

1.2.1. Tank sizing

 $V_{AT}(m^3)$:

Shape: Tick off the box or precise

Circular	
Rectangular	

1.2.2. Aerator

Number n =

Type (Surface aerators, aeration by compressed air...):

 $HO(kgO_2/h) =$

 $OC (kgO_2 . h^{-1} . m^{-3}) =$

SOTC $(kgO_2 / kWh) =$

E (kWh/d) =

t(d) =

C(0 to 1) =

Eventual aeration regulation: tick off the box and

Process regulation according	
time : precise the duration	
O ₂ : precise the thresholds	
ORP: precise the thresholds	

1.2.3. Mixed liquor

1.2.3.1. SS concentrations

[MLSS]
$$(kg / m^3) =$$

$$[MLVSS] (kg / m^3) =$$

1.2.3.2. Mixed liquor aspect

Colour:

Odour:

Eventual foam description:

1.2.3.3. Microscopic observation

1.2.3.3.1. Floc quality (Compact, Fairly compact):

1.2.3.3.2. Microfauna (Tick off the box)

		Proportionally	Proportionally	Proportionally
		numerous	few	rare
Free bacteria				
	Ciliated			
Protozoan	Flagellated			
	Amoeba			
Metazoan				

1.2.3.3.3. Filamentous bacteria description

1.2.3.3.1. Wet-mount technique

Length (Short, Long):
Ramification (\underline{N} one, \underline{R} eal, \underline{F} alse):
<u>Rigid / Supple</u> :
Sheathed:
Partitioned cells:
Rectangular / ovoid cells :
<u>Sulphur granules</u> :
1.2.3.3.3.2. Stream colour
<u>Gram (+ /-):</u>
<u>Neisser</u> (+ / -):
Sulphite (+ / -)

1.3 Settling tank

$$H(m) =$$

$$S(m^2) =$$

$$V_{30} (mL / L) =$$

Eventual dilution (dilution factor):

Eventual foam description:

1.4 Extracted sludge

[SS]
$$_{ES}$$
 (kg/m³) =

$$F_{ES} (m^3 / d) =$$

1.5 Recirculated sludge

$$F_{RS} (m^3 / d) =$$

2. Theoretical sizing

2.1. WW

	value
Biodegradability ratio COD /	
BOD ₅	
BOD ₅ /N/P	

Maximum mass discharge rate / average mass discharge rate =

2.2. Aerated tank

2.2.1. Tank sizing

F/M ratio (kg BOD₅ . kg MLVSS⁻¹ . d⁻¹) = [BOD₅] $_{M} \times q_{_{VM}} / ([MLVSS] \times V_{AT})$

Calculation: F/M ratio (kg BOD₅. kg MLVSS⁻¹. d^{1}) =

2.2.2. Aerator

2.2.2.1. Theoretical daily needs of oxygen O_{2T}

 $O_{2T}(kg O_2/d) = a' Le + b' Sv + 4.3 N (if nitrification) - c' 2.3 N (if denitrification)$

a' and b' constants values

Parameter	unit	High load	Medium	Low load	Extended
			load		aeration
F/M	(kg BOD ₅ .kg MLVSS ⁻¹ . d ⁻¹)	> 0.5	0.2 to 0.5	0.1 to 0.2	< 0.1
a'	kgO ₂ /kgBOD _{5 removed}	0.5	0.6	0.7	0.7
b'	kgO ₂ . kgMLVSS ⁻¹ . d ⁻¹	0.07	0.075	0.08	0.08

Le (kg BOD₅ / d) = ([BOD₅]
$$_{\text{M}}$$
 -[BOD₅] $_{\text{T oWW}}$) x $q_{_{\text{V M}}}$

$$Sv (kg MLVSS) = [MLVSS] x V_{AT}$$

$$N = [0.8 ([TKN]_{M} - [N.NH_{3}]_{M}) + [N.NH_{3}]_{M} - 0.05([BOD_{5}]_{M} - [BOD_{5}]_{T \text{ oww}})]xq_{v M}$$

c' = 0.75

Calculation: O_2 $_T(kg O_2/d) =$

2.2.2.2. Present oxygen supply

$$O_{2P}$$
 (kg O_2 / d) = n x SOTC x E x t x C

or

$$O_{2P}(kg O_2/d) = n x HO x t x C$$

Calculation : $O_{2P}(kg O_2/d) =$

2.3 Settling tank

Upward velocity UV (m/h) = q_{vM} / S

Calculation: UV(m/h) =

SVI $(mL/g) = V_{30}/[MLSS]$

Calculation : SVI (mL/g) =

2.4. Theoretical sludge extraction flow FTES

 F_{TES} $(m^3/d) = [a_m Le_{removed} - b Sv + S + Sf] / [SS]_{ES}$

Parameter	unit	High load	Medium	Low load	Extended
			load		aeration
F/M	(kg BOD ₅ .kg MLVSS ⁻¹ . d ⁻¹)	> 0.5	0.2 à 0.5	0.1 à 0.2	< 0.1
a _m	kg SS / kgBOD _{5 removed}	0.45	0.6	0.7	0.7
b	kg SS . kgMLVSS ⁻¹ . d ⁻¹	0.03	0.05	0.06	0.07

Le (kg BOD₅ / d) = ([BOD₅]
$$_{M}$$
 -[BOD₅] $_{T \text{ oww}}$) x $q_{v M}$

$$S (kg SS/d) = 0.5 \times [SS]_M \times q_{vM}$$

Sf (kg SS /d) = [SS]
$$_{\text{T oww}} \times q_{\text{V M}}$$

Calculation : $F_{TES}(m^3/d) =$

2.5. Sludge age SA

$$SA(d) = ([MLSS] \times V_{AT})/(F_{ES} \times [SS]_{ES})$$

Calculation : SA(d) =

2.6. Sludge recirculation

$$F_{TRS}$$
 $(m^3 / d) = [[MLSS] / ([SS]_{ES} - [MLSS])] x $q_{vM}$$

Calculation : $F_{TRS}(m^3/d) =$

3. Summary 3.1. iWW quality

1.1.Concentration of pollutants that make prebiological treatment desirable (from Activated Sludge Treatment Industrial Wastewater, W.W. Eckenfelder, J.L. Musterman, 1995)

Pollutant or System Condition	Limiting concentration
[SS]	125 mg / L
[oil]	50 mg / L
[Pb]	0.1 mg / L
[Cu + Ni + CN]	1 mg / L
[Cr VI + Zn]	3 mg / L
[CrIII]	10 mg / L
alcalinity	0.5g CaCO ₃ / gBOD _{5 removed}
[sulphides]	100mg / L
[phenols]	300mg / L
[ammonia]	500mgN / L
[DS]	16 g / L

1.2. Optimal values for inlet waste water

Maximum mass discharge rate / average mass discharge rate should be < 1.2

Parameters	optimal value
Biodegradability ratio COD /	< 3
BOD_5	
BOD ₅ /N/P	100 / 5 / 1
pН	6 to 9
T (°C)	13 to 38

3.2. F/M ratio

Parameter	unit	High load	Medium	Low load	Extended
			load		aeration
F/M	(kg BOD ₅ . kg MLVSS ⁻¹ .	> 0.5	0.2 à 0.5	0.1 à 0.2	< 0.1
	d^{-1}				
SA	d	1	2 to 8	>10	>15
nitrification		none	beginning	medium	efficient
bioflocculation		none	medium	efficient	
BOD removal	%	70	85 to 93	90 to 97	
efficiency					

3.3. SVI and settling

	optimal value	
SVI (ml / g)	< 150	
Upward velocity (m/h)	< 1	
recycling volume flow rate/ q _{V M}	1 if proper settle ability	
	1 to 2 if difficult settle ability	

3.4. Mixed liquor microscopic observations

4.1) Standard solution for COD measurement

Potassium hydrogenophtalate $KC_8 H_5 O_4 = 0.04253 \text{ g/L } (0.20824 \text{ mmol / L}) \text{ presents a COD} = 500 \text{mgO}_2/\text{L}.$

4.2) Standard solution for BOD measurement

(150 mg of glucose + 150 mg of glutamic acid) / L presents a BOD = $220 + -18 \text{ mg O}_2$ / L

4.3) Redox potential measuring - eH meter

Principle: eH measures the quantity of oxidations and reductions in a solution; it is a voltage measure.

As pH meter sensors, eh sensor consists of 2 electrodes, combined or separated:

- reference electrode; contrary to pH meter reference, there are a lot of sorts of references: calomel, silver (Aq, AqCl), Hq₂SO₄...

The measured potential must be recalculated in comparison to the standard hydrogen electrode ($E^{\circ} H^{+} / H_{2} = 0 V$).

Read the notice:

- to know if the indicated value is already expressed in comparison to standard hydrogen electrode
- if it is not, to know the difference with the standard hydrogen electrode For example :
- * add 248mV if the reference is calomel at 20°C, + 244.4 mV at 25 °C
- * add 199mV if the reference is Ag , AgCl, at 25°C....
- measuring electrode : platinum wire

Calibration:

Two kinds of buffers:

* quinhydrone 1 g . L⁻¹ in pH 4 buffer : at 25°C :

 $E H^{+}/H_{2} = 462 \text{ mV}$

E calomel = 218 mV

* Fe $^{2+}$ / Fe $^{3+}$:

- ferrous ammonium sulphate $[Fe(NH_4)_2 (SO_4)_2, 6H_20] : 39,2g (M = 392 g.mol^{-1})$
- ferric ammonium sulphate [FeNH₄ (SO₄)₂ , $12H_20$] : 48,2 g (M = 482 g.mol⁻¹)

in 700 mL distillated water

add 28.1 mL concentrated sulphuric acid ([H₂SO₄]final = 0.5M)

Fill up to 1L with distillated water

In this buffer, $Fe^{2+} = Fer^{3+} = 0.1 \text{mol} / L$

Then $E = E^{\circ} = 0.68V$ at 25°C

Read potential with reference:

- calomel : 0.68 0.244 = 0.436 V
- AqCl 3.5M : 0.68 0.199 = 0.481 V
- AgCl 1M : 0.68 0.236 = 0.444V

Maintenance: regular sensor mechanic cleaning

4.4) Oxygen concentration determination in water

Principle

Water oxygen concentration units are $\,:\,$ mg O_2 / L or saturation percentage (%) . The saturation percentage is measured in comparison to the oxygen concentration in a

demineralized water, at the same temperature :

If T = 0°C, 100 % = 14,6 mg O_2 / L

T = 20 °C, saturation for 9.2 mg O_2 / L.

The measurement must be done in **stirred** water because oxygen is consumed at the membrane level (30 to 50 cm / s). Some oxymeters have an incorporated stirrer.

A temperature increase induces a oxygen concentration decrease. The oxymeter measures water temperature and translates the concentration value in a saturation percentage value. Calibration:

- 0 % in a **saturated** sodium sulphite (Na₂SO₃) solution
- 100 % in the air.

Maintenance:

The membrane is very vulnerable.

The membrane and the electrolyte must be changed regularly; the electrodes must be cleaned.

5. Mixed liquor microscopic interpretation

5.1. Filamentous bacteria and relationship with operating

Figures 1 to 6 : Main filamentous bacteria responsible for bulking in activated sludge processes

5.2. Brief phenetic classification of microfauna in activated sludge

Figures 7 to 16: brief phenetic classification of microfauna in activated sludge

TOOLS

Activated Sludge Process Optimisation : Calculations